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ological Learning Lab for assisting me in undertaking this thesis. I would also like to
pay particular thanks to Jake Stroud for all his time spent providing me with helpful
feedback and interesting suggestions for directions to take this project in.

2



Technical Abstract

Working memory is essential for cognitive functions such as problem solving and plan-
ning, and it has been proposed that persistent activity in neural circuits underlies
working memory. Attractor neural networks can use strongly recurrent connections
to form persistent states, and information is encoded in these networks as locations in
neural state-space. In particular, continuous variables can be encoded as locations on
continuous manifolds of attractors in neural state-space. Existing models of these at-
tractor networks (for example, bump attractors) are hand-crafted, difficult to tune, and
are based around symmetric connectivity matrices which significantly restrict their dy-
namics. Specifically, current models are unable to account for dynamic coding that is
observed in monkeys during the delay period of a spatial working memory task (mem-
ory guided saccade); instead they predict a stable code, i.e. that the memory is stored
as a single point in state-space for the duration of working memory maintenance.

In this research we investigate recurrent neural network models that we have trained
to solve a generic working memory maintenance task. Importantly, we do not require
any symmetry from our networks. We train these networks using a cost function that
we have devised, that only requires the network to be able to maintain information for
a 1.5 second delay period.

We implement these recurrent neural networks and the cost function in TensorFlow
in Python, and show that our trained networks display attractor dynamics using a
fixed point analysis. We also visualise both the network dynamics and the attractor
manifold using principal component analysis. We finally undertake a decodability
analysis, computing the full cross-temporal decodability, and also the alignment index,
to determine that our networks exhibit a dynamic code.

Our key conclusions are, firstly, that it is possible to create continuous attractor net-
works without strict requirements on the connectivity matrix. Secondly, continuous
ring attractor manifolds can arise even if the network is only required to store a discrete
range of inputs. Finally, and most importantly, we demonstrate that the asymmetry of
our networks allows them to exhibit dynamic coding.
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1 Introduction

Any useful memory system must have the ability to store information that persists
over time and can subsequently be recollected. The duration for which memories
persist in the brain varies from seconds (short-term memory) [1] to years and even
decades (long-term memory) [2]. Short-term memory is a key aspect of working mem-
ory, which is short-term storage and manipulation of information for later use in rea-
soning and decision making [3]. Working memory is essential for cognitive functions
such as problem solving and planning [3], [4], so the neural mechanisms underpinning
working memory are of great importance.

Many different biological processes have temporal persistence that could reasonably
underlie memory in the brain, and these occur over timescales varying by orders of
magnitudes. Structural changes in the brain, i.e. the varying of synaptic strengths and
connections, are understood to be sufficiently persistent that they facilitate storage for
long-term memory [1], [5]. However, the changes required to ‘write’ these long-term
memories occur over the course of hours to days [6], [7], which is clearly too slow to ex-
plain working memory. So what are the mechanisms of working memory? Individual
neurons can respond quickly to changes, for example ion concentration time constants
are on the order of milliseconds to tens of milliseconds [8] and postsynaptic potentials
last for tens to hundreds of milliseconds [9], but the timescales of these biochemical
state variables are not long enough to provide a direct explanation of working mem-
ory [10]. Additionally, neural activity is highly noisy [1] and so simple representations
of information using individual state variables are implausible.

In their classic 1989 paper, Funahashi et al. [11] demonstrated that persistent net-
work activity could be the basis of working memory. They trained monkeys to perform
a memory guided saccade task, which is a spatial working memory task. The mem-
ory guided saccade task (figure 1) is as follows: a visual cue briefly appears in one
of several locations; the cue disappears and there is a ‘delay period’ of no cue being
displayed; the subject must recall which one of the original locations the cue appeared
in by enacting a saccade towards it. This task requires the subject to store the cue lo-
cation in their working memory for the duration of the delay period. Funahashi et al.
recorded prefrontal cortex (PFC) neurons in the monkeys which displayed sustained
elevated firing rates when the maintenance of a working memory was required. Im-
portantly, the increases in firing rate were selective to the information that the monkey
was tasked with remembering, suggesting that the persistent activity of neurons mean-
ingfully encodes information. Such persistent neuron activity is facilitated by neural
circuits with strongly recurrent excitatory connections [12]–[14], as the presence of re-
current connections allows for positive feedback which enables the creation of stable,
persistent ‘attractor’ states [1], [15]. The modelling of recurrent neural networks with
persistent activity has become a ubiquitous framework for understanding short-term
memory [10], [16], [17] and working memory [12], [18]–[20].
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Memory Guided Saccade

M = 2 M = 4 M = 8

Cue Period Delay Period Response

Possible Cue Locations

Figure 1: Upper - memory guided saccade task. The black square represents the cue
location. Lower - the cue location is randomly chosen from a set of M possible locations
around a circle.

1.1 Attractor Neural Networks

Attractor neural networks are some of the most extensively studied models of neural
circuits. It has been proposed variously that attractor dynamics underlie neural activity
in: head direction circuits [21], [22]; the oculomotor system [23]; the hippocampus
[24]–[27]; the prefrontal cortex [17], [19]. The defining feature of an attractor network
is the ability to maintain persistent levels of neural activity after the removal of an
input [1]. The ‘state’ or ‘activity’ of the network is given by the activity (firing rate) of
each individual neuron, and information may then be encoded by a location in neural
state-space [28]. States in the proximity of an attractor state will be drawn into the
attractor state, and if reached the network will remain in the attractor state indefinitely.
Attractor states can either be separate, individual points in the state-space of a network,
or exist as a continuum, such as a line or a ring [25], [29], [30]. Attractor networks
are accordingly either ‘discrete’ or ‘continuous’, and both are relevant as models of
neural circuits [28], [31], [32]. Unsurprisingly, discrete attractor networks are generally
associated with the storage of discrete i.e. categorical information [33], [34] whereas
continuous attractor networks are more suitable for storing continuous variables, such
as the angle around the circle of a cue in the memory guided saccade task [28]. We
often refer to these networks simply by the topology of their attractor manifolds, e.g.
‘ring attractors’ or ‘line attractors’. Neural dynamics, i.e. changes in activity over time,
can be represented as paths in state-space; if regions of state-space cause these paths
to vary very slowly then these regions are effectively attractors. These are also called
‘slow regions’ of state-space.
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1.2 Attractor Networks for Working Memory

Attractor networks have proved to be fruitful models of working memory [17], [20],
[25], [35]. One such model for encoding cyclic variables such as direction [36] or hue
[37] is the ‘bump attractor’ [19], [20], [35]. The bump attractor is a ring attractor where
neurons that are selective to different values of the input form a bump of activity along
the ring, i.e. the value encoded by the network is the location of a bump (figure 2). The
network activity corresponding to this bump is persistent over time [19] (figure 2) -
which is the key requirement for any useful memory model. Besides this fundamental
property bump attractor models have shown promise in explaining other neural phe-
nomena [19], [38] such as the increase in imprecision of working memory over time
(proposed by [19] to be the result of noise causing drift along the ring, shown in figure
2). But despite these successes, current continuous attractor network models [19], [35],
[39] have some notable inadequacies.
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trial-to-trial relationship between variability in neural activity and 
variability in behavioral responses that we tested in the data.

Tuning-curve bias in the delay predicts behavioral biases
According to our hypothesis, population activity displacements at the 
end of the delay underlie behavioral response deviations. These dis-
placements of population activity should be reflected in a systematic 
bias of delay tuning curves derived from the sets of trials that led to 
clockwise and counterclockwise deviations (Supplementary Fig. 1).  
For each neuron, we separated clockwise and counterclockwise  
trials for each cue condition (Fig. 3a) and computed the correspond-
ing clockwise and counterclockwise tuning curves (Fig. 3b) as the 
corresponding trial-averaged firing rate versus the eight angles of 
the cue location. The tuning bias was defined as the signed angular 
distance from the counterclockwise to the clockwise tuning curve 
centers (Online Methods). With this definition, our hypothesis pre-
dicts that the tuning bias should become positive during the delay 
(Supplementary Fig. 1). We computed tuning biases for all neurons 
in different time windows along the trial and combined them to obtain 
the time evolution of the population tuning bias. Consistent with 
the bump attractor hypothesis, the population tuning bias became 
significantly positive at the end of the delay (tuning bias = 4.4 ± 2.9°  
in the last second of delay, one-sided permutation test, P = 0.024,  
n = 204), right before the behavioral response (Fig. 3c). To test for  
a possible motor origin of this signal, we repeated the analysis,  
excluding neurons with increasing rates in the delay period (posi-
tive modulation index; Fig. 1f), which have been shown to represent  
saccade preparation23. We still found significantly positive tuning 

bias in the last second of the delay (tuning bias = 9.9 ± 6.6°, one-sided 
permutation test, P = 0.014, n = 101), thereby excluding a driving 
role for saccade preparation neurons in generating the tuning bias 
during the delay.

In addition, we found a quantitative agreement between the mean 
tuning bias computed from our 204 neurons and the mean behavioral 
deviation computed as the difference between the average saccade end 
points of the corresponding counterclockwise and clockwise trials (mean 
tuning bias = 4.4 ± 2.9°, mean behavioral deviation = 7 ± 0.2°, Welch’s test, 
t = 0.9, P = 0.36, n = 201). This order-of-magnitude match indicates that 
the bump attractor hypothesis in PFC can account for the magnitude of 
behavioral inaccuracies that we observed experimentally.

Correlation between delay activity and behavioral deviations
Thus, average tuning was related to dichotomized behavior  
(clockwise-counterclockwise; Fig. 3). In addition, the bump attractor 
model predicts that firing rates should correlate on a trial-by-trial 
basis with parametric deviations in behavioral response. In particular, 
a neuron increases its activity as the activity bump moves closer to 
its preferred location. As a result, trials for which a given neuron had 
stronger delay responses should result in behavioral deviations toward 
that neuron’s preferred location. Thus, we would expect a positive 
correlation between firing rate and behavior attraction to the neuron’s 
preferred location. This effect should be especially strong for neurons 
with strong tuning and for cues at the tuning curve flanks (that is, cues 
1–2 positions from preferred), where responses are most sensitive to 
small variations in bump location (Fig. 4). 
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Figure 2  Bump attractor dynamics during the delay can explain behavioral 
inaccuracies. (a) Spatio-temporal representation of network activity during 
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Figure 2: Upper - the bump attractor model encodes a circular variable (shown by the
arrow) as the location of a bump on a ring. Adapted from [40]. Lower - bump activity
persists over time (but drifts slowly). Adapted from [19].

The first problem with current attractor neural network models, in simple terms, is
that their structure is unrealistic. In 1995, Ben-Yishai et al. [30] presented their ring
attractor model of orientation tuning. This model is constructed by carefully choos-
ing network connectivity weights only as a function of distance between the angles
for which neurons are most selective. Current models [19], [35], [39] use similar meth-
ods to hand-craft continuous attractor networks, i.e. use connectivity that is effectively
of the form Wij = f (|i − j|) - which creates symmetric connectivity matrices. These
networks depend on this symmetry to realise their attractor dynamics [29], [30], [41],
but biology is inherently heterogeneous and synaptic connections in the brain are not
expected to obey such rigid symmetry [39], [42]. Furthermore, symmetric matrices
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are diagonalisable, which essentially negates any interconnectedness of the network.
This problem is evident when analysing the tuning curves of neurons within a circuit.
Ring attractor models based on symmetric connectivity predict homogeneous tuning
curves, where every neuron shows the same response (up to a phase shift) to the input
condition. However, real measurements of tuning curves show heterogeneity [42]. An
additional problem with these models is that recipes to hand-craft connectivity matri-
ces which form continuous attractor networks are difficult to determine and difficult
to tune [39].

1.3 Stable and Dynamic Coding

The second problem with current models (section 1.2) that we address is their inabil-
ity to produce certain aspects of neural dynamics that are observed in the brain. To
understand this issue we must first distinguish between ‘stable coding’ and ‘dynamic
coding’.

Beyond the analyses of neural spiking activity, cross-temporal
decoding analyses of electroencephalography (EEG) and magne-
toencephalography (MEG) data also revealed dynamic activity in
those data, although changing patterns of EEG/MEG activity
could be due to information traveling between brain regions rather
than a dynamic code within a population of neurons (Carlson et al.
2011, 2013; Cichy et al. 2014; Isik et al. 2014; King and Dehaene
2014). Additionally, analyses of local field potentials in monkeys
have revealed �-burst during memory delay periods, which appear
to be associated with dynamic codes (Lundqvist et al. 2016).
Finally, Harvey et al. (2012) used two-photon imaging of mouse
posterior parietal neurons and observed that most neurons were
selective for relatively short periods of time and showed that
neurons with different windows of selectivity were intermingled
throughout this brain region.

It is important to note that the difference between studies
that found stationary and dynamic codes is not due to different
data analysis methods, since several studies using the temporal
cross-decoding analyses have found stationary codes as well
(see Fig. 4 and King and Dehaene 2014). Currently, it is not
clear why some studies find dynamic code and others find
stationary codes, although there seems to be a general trend
that stationary codes are present when simple stimulus attri-
butes need to be remembered (Meyers et al. 2017; Murray et al.
2017; Spaak et al. 2017; Zhang et al. 2011), whereas dynamic
codes are present when more complex stimulus transforma-
tions are needed to solve a task (Crowe et al. 2010; Meyers et
al. 2008, 2012; Stokes et al. 2013). Additionally, it appears that
there might be more persistent sustained selectivity in the
anterior-dorsal region of the prefrontal cortex, whereas there is
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(shown on the left), the response to each image is a single point that does not change with time. For a dynamic code (shown on the right), the population response
creates a trajectory in 3-dimensional space. Because these trajectories do not cross, it is possible to distinguish between cat and dog images at all points in time.
It should be noted that in the literature, the terms stationary code, “stable code,” and “static code” are used interchangeably to refer to the phenomenon illustrated
on the left plots in this figure.
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Figure 3: Representation of how network activity could encode categorical information
in neural state-space, and how this coding may be either stable or dynamic. Figure
adapted from [43].
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Persistent activity has been proposed as the basis for working memory [43], but even
if this was a known certainty, it still leaves open the question of how neural circuits
with persistent activity actually use persistent activity to encode information. In other
words, what is the mapping between the neural activity in a neural circuit, and the
information (memory) that is encoded by that circuit?

Perhaps the simplest answer to this coding question is that there is a one-to-one map-
ping between points in a subset of neural state-space and the set of information that the
network can encode. This implies that anytime the circuit is required to store that piece
of information, it enters the corresponding state. This is demonstrated for a 2-class cat-
egorical problem on the left of figure 3, where one state corresponds to a dog, and the
other to a cat. This is ‘stable coding’ [43]. In contrast, ‘dynamic coding’ is a many-to-
one mapping from neural states to encoded information, where the network traverses
a state-space trajectory during memory maintenance [43]–[45]. Figure 3 shows how
dynamic coding might be used to encode two classes with arbitrary state-space trajec-
tories.

Bump attractor networks use an inherently stable coding - the network ‘remembers’
its exact input state and persists in that state for the duration of the delay period of
the task. Figure 2 (lower) shows this clearly, the bump moves forward in time, but
is effectively the same bump - and so the same coding - for all time in the delay pe-
riod. However, there is evidence to suggest that the coding used by neural circuits
involved with working memory is in fact highly dynamic, particularly during the first
few hundred milliseconds after cue presentation [45]–[49].

For example, Spaak et al. [45] trained monkeys to perform a memory guided saccade,
and recorded the activity of PFC neurons. To assess evidence of dynamic coding they
trained classifiers to discriminate between the cue locations the monkey had received
(and was storing in working memory in order to complete the task), based on tempo-
ral slices of the recorded neural activity. Training a classifier in this fashion effectively
learns the coding that the network is using at that time of the task. By assessing the per-
formance of a classifier (i.e., a code) trained using one time slice of the task, on another
time slice, it can be determined how well the code generalises across the different times
of the task. For a stable code, the generalisation should be strong between all pairs
of time points, but with dynamic codes, points at very different times will use very
different codes and so exhibit low decodability. Figure 4 shows the full cross-temporal
decodability analysis on these recordings, and clearly exhibits a strongly dynamic code
at the start of the task.

So why can’t we just ‘fix’ existing continuous attractor network models to demon-
strate dynamic coding? As discussed in section 1.2, constructing a continuous attractor
network is not a trivial undertaking [35], [39], and even with the significantly restrictive
constraint of connectivity matrices being symmetric they are difficult to tune, requir-
ing careful setting of parameters [1], [30]. No continuous attractor network models
displaying dynamic coding have yet been established in the literature.
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Figure 4: Cross-temporal decodability (discriminability) of electrophysiological
recording data from monkeys during a memory guided saccade task. The white con-
tour line shows that the decoding determined using early activity generalises poorly
to late times, indicating strongly dynamic coding. Figure adapted from [45].

1.4 Can Continuous Attractor Models Exhibit Dynamic Coding?

In this work we study Recurrent Neural Network (RNN) models capable of perform-
ing working memory maintenance. We present a cost function with which to train
models on to solve a working memory task. We then analyse the properties of the
trained networks to demonstrate that they exhibit attractor dynamics. We explore how
training on a task with a discrete number of visual cue orientations can generate a net-
work capable of continuous encoding of the visual cue, if sufficiently many discrete
angles are used.

We then demonstrate how constraining a network to be symmetric (in the sense that
its network weights are symmetric) during training restricts the complexity of the re-
sulting dynamics; in contrast, training networks identically but without constraints on
symmetry yields richer dynamics. In particular, we show by analysing the network
dynamics that the symmetric networks learn a stable code, whereas the unconstrained
networks learn a code that is highly dynamic at the start of the delay period. This dy-
namic code is much closer to the electrophysiological data recorded from monkey PFC
[45] during working memory tasks.
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2 Methods

We trained Recurrent Neural Networks (RNNs) to perform a generic working memory
task which requires the network, after a ‘delay period’, to correctly recall which one of
the M initial conditions it started at. The networks receive no additional external input;
their dynamics are determined entirely by the initial condition, and subsequent noise.

2.1 Recurrent Neural Network Dynamics

We study RNNs with N = 50 recurrent units and where each unit can emit both posi-
tive or negative connections (i.e. the units do not obey Dale’s law). A tanh nonlinearity
is used. The following vectorised differential equation governs the N dimensional neu-
ral activity x(t) = [x1(t), x2(t), . . . , xN(t)]:

τ
dx(t)

dt
= −x(t) + Wrecf(x(t)) + ση(t), (1)

where f is a tanh nonlinearity acting on each element of x, and τ is the time constant
of the system. The network noise η(t) is identically and independently distributed
(i.i.d.) over time, with each noise vector drawn from a zero-mean multivariate Gaus-
sian with identity covariance matrix, and σ is a parameter that scales the noise. We
use N = 50, τ = 50 ms, and σ = 0.01√

2
throughout. Wrec is the N × N network connec-

tivity matrix, and each element is initialised by sampling a zero-mean Gaussian with
variance 1/N, so that its largest eigenvalue is approximately one [50].

Euler integration is used to simulate the dynamics in equation 1. We are interested
in how network dynamics vary for the same network given different initial conditions,
so we shall denote network activity that was initialised at the mth initial condition as
xm(t). Using the first-order approximation x(t + δt) ≈ x(t) + δt

[
dx(t)

dt

]
we update the

neural activity at each timestep according to

xm(t + δt) = xm(t) +
δt
τ
[−xm(t) + Wrecf(xm(t)) + σηm(t)] +

√
δt
τ
[σηm(t)] , (2)

for each of the M initial conditions. δt = 1 ms throughout. Each initial condition is
a network state xm(t = 0) that corresponds to one of the values of θcond, which is the
value of the stimulus variable, e.g. the angle of the cue in the memory guided saccade.

2.2 Task Setup

The working memory task we simulated is a classic memory guided saccade, although
all our analysis is generic enough that it applies to any working memory task for a
cyclic variable partitioned into M classes. The possible locations of the visual cue are
constrained to lie evenly spaced on a circle, so that each stimulus position can be en-
coded by a single angle, which we denote θcond. We do not simulate a cue period,
instead we use the initial condition to capture the cue specific activity, i.e. our simula-
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tion begins at the start of the delay period. The duration of the delay period is 1500 ms.

This is the same task used by Wimmer et al. [19] and others [11], [45] which uses
M = 8 different cue directions. Other studies have used more classes, for example
M = 16 [36]. This task may readily use entirely continuous initial conditions, as in
Bays et al. [37] (with a colour wheel rather than a spatial task), in which case the
objective is to minimise angular error rather than classification error.

Since the initial condition for the network captures the cue specific activity, the net-
work can learn to solve the task simply by discretely classifying the different neural
dynamics from each initial position. From the perspective of the network, this objec-
tive is equivalent to asking ‘use the final state of this network to determine which one of
the M states this network was initialised with’. However, this becomes increasingly chal-
lenging as M increases and the initial conditions become more closely spaced. A more
intuitive approach to the task is to store θcond as a continuous value in working mem-
ory for the duration of the delay. This approach does not become more difficult for
increasing M. The cost function we shall present favours the latter representation of
the initial condition.

2.3 Rings Embedded in High Dimensions

The possible positions of the stimulus form a circle, with each position representing
a different value of θcond. The positions are evenly spaced, i.e. θcond = m∆θ for m ∈
{1, 2, . . . , M} and ∆θ = 2π

M . This circle is two dimensional, but the network state is
N-dimensional, so to encode this initial angle in the network we first choose a two-
dimensional subspace of RN, which is the plane spanned by the unit vectors êinit

1 and
êinit

2 . These vectors are randomly initialised, with the value for each dimension drawn
from a zero-mean Gaussian, before each is then scaled to have unit norm. A ring of
initial conditions of radius r is then created by rotating these vectors about the origin
as follows;

xm(t = 0) = r
[
sin(m∆θ), cos(m∆θ)

] [
êinit

1 , êinit
2
]> , (3)

for each m ∈ {1, 2, . . . , M}. We empirically determine r = 5 to be a reasonable scaling
for initial conditions.

2.4 Cost Function

We devised a cost function to train the parameters of the network to form a continuous
attractor network. We introduce a 2× N (rank 2) matrix of ‘readout weights’, Wout,
and for the dynamics of each initial condition, take the inverse tangent of the two
components resulting from this mapping to produce an angle, denoted θm(t). The
two rows of Wout are written w1 and w2, and each is initialised by drawing values
from a standard Gaussian. The cost function is then computed over time and initial
conditions using the cosine of the difference in angle between θm(t), and the angle that
was encoded by the initial condition of these dynamics, m∆θ. The cost function is
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C(t) = 1− 1
M

m=M

∑
m=1

cos(θm(t)−m∆θ), (4)

where

θm(t) = ]
(
[w1, w2]

>xm(t)
)

, (5)

and ](α) gives the angle between α and the vector [1, 0].

This cost function is applied to the final 1000 ms of the delay period, T1 = 500 ms to
T2 = 1500 ms, so the total cost of the network dynamics is

Ctot =
∫ T2

T1

C(t)dt. (6)

2.5 Training Attractor Networks

The parameters of the network that are allowed to train to minimise the cost are the
network weights, readout weights, and the unit vectors defining the initial ring; i.e.,
Wrec, Wout, êinit

1 , êinit
2 . Importantly, we constrain some networks to have symmetric

Wrec, by constructing Wrec = 1
2

(
Wsym + W>sym

)
and only directly training Wsym. We

train these symmetric networks as a control to compare the effect of constraining net-
work structure in this fashion, as most existing networks are symmetric [19], [35], [39].

To train each RNN, the network is first set to its initial conditions, then dynamics
are run, and the cost function evaluated at each timestep. The values of the cost at
each timestep are summed to generate the overall cost, approximating the integral in
equation 6. The network and cost function are implemented in Tensorflow in Python,
and automatic differentiation is used with an Adam optimiser (with a learning rate of
0.0005) to minimise the cost with respect to the set of trainable network parameters. A
batch size of 25 is used throughout; each batch has independently generated noise and
the cost function is averaged over batches. Each computation of the network cost in
equation 6 and subsequent gradient update is one epoch. Each network was trained
for 1,000 epochs, with a criteria that if the cost exceeds 0.5 (i.e. a mean angular error
of π/3) at epoch 100 then the network is discarded and training restarted with all
randomly initialised parameters redrawn. This happens in around 10% of training
attempts. Successfully trained networks typically have a cost between 0.001 and 0.005.

2.6 State-Space Trajectories

Whilst it is possible to directly plot the activities of all neurons in these networks, this is
not usually the most insightful way to visualise neural dynamics. Instead, we use prin-
cipal component analysis (PCA), which is widely used for dimensionality reduction of
neural dynamics [51]–[53]. The dynamics of a network are a path in N-dimensional
state-space, which we visualise by projecting onto a two-dimensional subspace. The
subspace that we project onto is that spanned by the top two principal components
(PCs) of the neural activity during the final 500 ms (‘late-delay’). We call this plane the
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‘attractor space’, and denote the first and second principal components as PCattr
1 and

PCattr
2 respectively. These PCs form axes in figures 5, 6, 7, 8, 9, 10, 11.

2.7 Network Slowness

There is meaningful analysis we can undertake that focuses on the network itself,
rather than simulated dynamics. A simple way to directly analyse attractor prop-
erties of a network, is to plot the ‘slowness’ of trajectories in state space. In equa-
tion 1, E[η(t)] = 0, so E[dx(t)

dt ] ∝ −x(t) + Wrecf(x(t)). Accordingly, for any point in
the state-space of the network x we define the slowness to be the two-norm ‖g(x)‖2,
where g(x) = −x + Wrecf(x). To visualise the slowness we sample points from an
evenly-spaced grid on the attractor space and evaluate ‖g(x)‖2 at every point, giving
a ‘heatmap’ of network slowness.

2.8 Fixed Point Analysis

To determine the locations of the attractor states of a network a numerical method is
used that attempts to solve for the solutions of dx(t)

dt = 0. As the noise for this system
has zero mean, it does not affect the location of any attractor states of a given network,
and so is removed by setting the noise scaling to σ = 0. From eq. 1, dx(t)

dt = 0 then
requires x = Wrecf(x), i.e. the fixed points of Wrecf(x) are to be found. Note that from
the evenness of f = tanh, g is an even function of x, and so a fixed point at x implies a
fixed point at −x. As in section 2.7, g(x) is the expression −x + Wrecf(x).

A set of P = 1000 ‘particles’ are independently sampled from a distribution over
the state-space of the system, which is an N-dimensional multivariate Gaussian with
mean zero and identity covariance matrix. Each particle is scaled by a constant so that
the ‘cloud’ of particles is sufficiently spread out so as to avoid too many particles being
too close to the trivial attractor state x = 0. This scaling constant was empirically set to
10 for all analyses. A cost function is then implemented, and minimised with respect
to the particles xp;

C =
p=P

∑
p=1

∥∥g(xp)
∥∥2

2 . (7)

Iterative minimisation of this cost causes the particles to travel through state space
towards locations that have slower dynamics. This optimisation is run for 5000 itera-
tions, with the learning rate of the Adam optimiser, which starts at 0.1, halved every
1000 iterations as the speed near the fixed points asymptotically approaches zero. Par-
ticles which have speed above a suitably low threshold (0.005) are discarded, and all
remaining points are then determined to be sufficiently slow that they are effectively
attractor states. The trajectories that each particle takes during this minimisation can
also provide insight to the behaviour of the network.

14



2.9 Cross-Temporal Decodability

We can determine how well a network solves our task by training a classifier to dis-
criminate between dynamics that started at different initial conditions. To understand
the nature of the coding used by the network, we analyse this classification perfor-
mance in a fully cross-temporal fashion. Previous research has used this same decod-
ing analysis [44], [46] (section 1.3, figure 4).

For a given model we generate 10 batches of neural activity, each initialised identi-
cally but with independently generated noise. We assign 5 batches for training and
5 for testing. We partition neural activity into non-overlapping 25 ms bins. We then
arbitrarily assign class labels so that each sample of N-dimensional activity has a la-
bel corresponding to its initial condition M. We train logistic regression classifiers in
Python using sklearn.linear model.LogisticRegression, with the maximum num-
ber of iterations set to 5,000 and all other parameters as default. To generate element ij
of the full cross-temporal decodability matrix, we train a classifier on the ith bin of the
training batches, and test on the jth bin of the testing batches. The ‘decoding accuracy’
is the fraction of activity samples that classified to the correct value of M.

2.10 Alignment Index

We measure the ‘alignment index’, set out in [54], to measure how the PCs of neural
activity at different times align with each other. This is performed in a fully cross-
temporal fashion. We start by assigning 5 training and 5 testing batches, and partition
dynamics into 25 ms bins exactly as in section 2.9. We then take the top two PCs of the
training bin at t1, denoted PC(t1)

1 and PC(t1)
2 , and compute what fraction of the variance

of the testing bin at t2 is explained by these components. If P = [PC(t1)
1 , PC(t1)

2 ] and
C(t) is the covariance (across batches, initial conditions, and timesteps) of the testing
bin at time t then we can write the alignment index matrix as

At1t2 =
Tr(P (t1)

TC(t2)P (t1))

Tr(C(t2))
, (8)

where Tr is the matrix trace operator.
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3 Results

RNNs were trained according to the cost function detailed in equation 6. After con-
firming that the networks behave as expected for low values of M, the value of M was
increased until it was determined that the nature of the attractor states of the networks
produced were continuous rather than discrete. For M = 20, we then trained ten sym-
metric RNNs and ten unconstrained RNNs as described in the methods and analysed
their properties.

3.1 Trained Networks Solve the Task

Our first results are to verify that training networks results in the task being solved.
We set M = 2, which corresponds to a simple left vs right memory guided saccade.
A single unconstrained network was randomly initialised, and trained for 50 epochs.
The attractor space PCs were taken for the trained network, and the activity of both the
untrained and trained network plotted in this space. Figure 5 shows 1500 ms of neural
dynamics for this network, starting from each initial condition.
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Figure 5: 1500 ms of activity projected into the attractor space for an unconstrained
network with M = 2. Open circles correspond to t = 0. Before training dynamics have
poor decodability, particularly at the end of the delay; after training, dynamics from
each of the initial conditions are decodable, and two attractor states have been formed.

Before training, the dynamics show both initial conditions decaying to zero, after
which they are effectively indistinguishable from each other. Conversely, the state-
space trajectories taken from each initial condition for the trained network are easily
separable, as shown in figure 5. Therefore the trained network displays easily decod-
able dynamics and has solved the task.
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3.2 Trained Networks Display Attractor States

The solution of the task is insufficient to conclude that an attractor network has been
formed. To confirm that our trained networks do display attractor states, we trained
an unconstrained network with M = 8 and undertook the fixed point analysis detailed
in section 2.8.
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Figure 6: Neural dynamics of a network trained with M = 8. Open circles correspond
to t = 0. Attractor states, marked with crosses, are created for each initial condition,
with these points lying on a ring. Crosses mark the determined location of attractor
states, from fixed point analysis.

The attractor states formed by training this network are shown in figure 6, overlayed
onto the neural dynamics for each initial value of θcond (plotted in the same space
spanned by the top two PCs of late neural activity). The points at which the neural dy-
namics are drawn towards, and stagnate at, exactly match the determined locations of
attractor states. The attractor states lie on a ring that is embedded in the N-dimensional
network state. The evenness of g (see section 2.7) means each attractor state has a con-
jugate attractor state π radians around the ring.

A crucial question to ask of the network in figure 6 is whether it forms a continuous
or discrete attractor network. The attractor states marked in figure 6 do lie on a ring,
but despite the fixed point analysis using P = 1000 particles (684 of which pass below
the slowness threshold, see section 2.8) only 16 individual attractor states are visible
(excluding 0). Each cross is in fact dozens of particles that have converged to the same
point - so the attractor states are discrete.

This analysis demonstrates that our cost function produces networks with attractor
states, despite the cost function scoring only a general requirement of the task, and
making no assumptions about whether or not attractor states should form.
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3.3 From Discrete to Continuous Attractor Networks

We have shown we can train attractor networks with discrete attractor states, but can
we train attractor networks with continuous attractor manifolds?

We investigate further the nature of the attractor states of the previous network (fig-
ure 6) by plotting the trajectories of all particles during fixed point analysis, and also
the slowness of the network (figure 7). The increased prevalence of particle trajectories
lying on the ring, between the discrete attractor states (the crosses in figure 6), indicates
that during fixed point analysis the particles are first drawn onto the ring, then slowly
move along the ring towards local minima. The ring in the slowness plot of figure 7
is uneven, further showing that the speed is inconsistent at different positions on the
ring. This reaffirms our conclusion that this network has formed a discrete attractor.

Despite this, both plots clearly show that points lying on the ring tend to be slower
than points not on the ring. It is remarkable that with as few as M = 8 initial condi-
tions, discrete attractor states already begin to merge to form a continuum. Current
working memory models require convoluted recipes [19], [30] to produce networks
capable of solving this task, even for M = 8 [19]. This demonstrates the generality
of our cost function and the power of using a normative approach over developing
such models by hand; we make fewer assumptions about the structure of the network
weights (section 1.2), and are able to produce more realistic networks as a result.

Figure 7: Analysis of unconstrained network trained with M = 8. Left: fixed point
analysis particle trajectories plotted with transparency. The dark patches on the ring
each correspond to the endpoints of many particles, i.e. the crosses in figure 6. Right:
log plot of the network speed ‖g(x)‖2. As in section 2.8, g(x) = −x + Wrecf(x).

We now demonstrate that by increasing the number of initial conditions M, the many
discrete attractor states spaced on the ring merge to form one continuous ring. We
trained networks with values of M ranging from 4 to 20 and plotted the slowness of
each network in its attractor space (figure 8).

18



Figure 8: Slowness of six different unconstrained networks with varying numbers of
initial conditions M. Each plot is normalised onto the same scale. As M increases, the
nature of the network transitions from a discrete attractor to a continuous attractor.

Figure 9: Unconstrained network trained with M = 20 (not the same network as in
figure 8). Left: fixed point analysis particle trajectories, with the same number of par-
ticles, size, and transparency, as figure 7. Right: log plot of the network speed ‖g(x)‖2.
As before, g(x) = −x + Wrecf(x).
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As discussed in the previous section, the formation of a ring begins remarkably
quickly with respect to M, even for M = 4 there is some clear continuity, and not
simply four unrelated attractor states. We suggest that this results from the symmetry
of the initial conditions, i.e. their positioning on a ring, though no tests are performed
on non-ring initial conditions to confirm this with certainty.

We find that by M = 20, the slowness plot shows a smooth ring, and we undertake
fixed point analysis of a M = 20 unconstrained network to determine if the attractor
states are genuinely continuous. We plot the trajectories of particles during fixed point
analysis, and the slowness of the network in the exact same fashion as in figure 7. In
stark contrast to the earlier M = 8 network (figure 6), the M = 20 network displays a
clear continuum of fixed points; the particle trajectories of fixed point analysis do not
bunch together into discrete points and are evenly distributed around the ring (figure
9). A further plot of the speed-thresholded end locations of the fixed point analysis
particles on another two unconstrained networks trained in the same way confirms
that these trajectories are not drawn towards a small number of discrete states but are
spread almost perfectly uniformly across the ring (figure 10). These are continuous
attractor networks.
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Figure 10: Neural activity of two example unconstrained networks trained with M =
20. Open circles mark t = 0 and attractor states are marked with crosses. Attractor
states are found in a continuum around the ring rather than just at the end points of
the dynamics. There are clearly significant dynamics in directions orthogonal to the
attractor space.

Figures 9 and 10 show that our cost function, as well as producing discrete attractor
networks for low M, can produce continuous attractor networks by increasing M to 20.
As before, our cost function requires no more than the maintenance of a variable dur-
ing the delay period - the emergence of continuous attractors from random networks
as a result of solving a working memory task rather than by deliberate and unrealistic
manipulation of the network weights Wrec provides a more plausible explanation for
how such a circuit might actually arise in the brain.
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3.4 Dynamics of Symmetric and Unconstrained Networks

We now compare the neural dynamics of unconstrained networks with M = 20 to
networks that are trained otherwise identically but with the constraint that Wrec must
be symmetric (figure 11).
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Figure 11: Dynamics of models trained with M = 20 initial conditions. Open circles
correspond to t = 0. Left - symmetric network, right - unconstrained network. The
symmetric network learns to solve the task by staying very close to its initial condi-
tions, precluding a strongly dynamic code. The unconstrained network displays more
interesting dynamics, which may be due to dynamic coding.

The key result of figure 11 is that the symmetric networks learn to solve the task
in using the same approach that existing models, which mostly are symmetric [19],
do. That is, as discussed in section 1.3, the task is solved effectively by remaining at
the location of the initial conditions for the duration of the delay period. If the network
remains in one state for the duration of the delay period, it must be using stable coding.

Figure 12: Network connectivity for the first 25 of N = 50 recurrent units, i.e. top-left
quadrant of Wrec, for three networks. Left to right: classic-style model using cosine
function, trained symmetric network, trained unconstrained network.

21



Nevertheless, the creation of symmetric continuous attractor networks from a ran-
dom initial condition is an important result. Firstly, training networks in this fashion
does not result in a synaptic connectivity matrix (figure 12) with the rigid structure
that we observe in classic models [17], [19], [30]. (The differences in structure are not
explained by the permutation of rows and columns, which is allowed because the or-
dering of neurons is arbitrary.) Secondly, rather than being constructed from a pre-
planned neural circuit design, these networks can be generated by optimisation of the
cost function which only requires the working memory task to be solved, and does
not place any requirements on the network structure that should emerge - providing a
more plausible explanation for how such circuits might actually arise in the brain.

3.5 Evidence for Dynamic Coding

Figure 11 appears to show that when we train symmetric models, the result is a stable
coding. To determine robustly the nature of the coding in the unconstrained case we
investigate the dynamics of these networks further. The first and most simple analysis
we undertake is to directly plot neuron activity (figure 13) for both of the networks in
figure 11. The unconstrained network demonstrates a strongly dynamic code; the state
at the start of the delay period is very different to the state at the end (recall the toy
example showing precisely this in figure 3).
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Figure 13: Examples of the first 1000 ms of neuron activities of symmetric and uncon-
strained networks, for a single initial condition. The first five neurons are shown as a
representative sample of the network. The symmetric networks exhibit stable coding,
whereas the unconstrained network appears to exhibit dynamic coding.

A more thorough analysis of the decodability of unconstrained networks was then
performed. We trained classifiers on late delay dynamics to measure how well the code
used by the network at the end of the delay generalises to the dynamics at the start.
This is exactly the top row of the full cross-temporal decodability matrix (section 2.9,
figures 4, 15). For M = 20, we trained 10 symmetric and 10 unconstrained networks
and averaged decoder accuracy (figure 14). The decrease in decoding accuracy by the
unconstrained networks at early-delay times clearly shows that by not requiring our
networks to be symmetric, the solution to our cost function that the networks find is
one using dynamic coding.
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Figure 14: First 1000 ms of decodability of dynamics using classifiers trained on late-
delay dynamics (trained separately for each model), for 10 unconstrained and 10 sym-
metric networks, for M = 20. The mean is taken across batches and networks, with
the shading showing ± one standard deviation. Note that the standard deviation for
symmetric networks is barely visible as decoding accuracy is close to unity for all net-
works.
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Figure 15: Full cross-temporal decodability for a single symmetric network (left) and
unconstrained network (right). The unconstrained network displays dynamic coding,
with a solid block of late-delay decodability, i.e. the same code from that time onwards.

23



To allow a comparison of our simulations to the electrophysiological data from the
monkey PFC, presented by Spaak et al. [45] and others [46], [47], we plot the full
cross-temporal decodability matrix for a single unconstrained network (figure 15). As
a control, we also plot the cross-temporal decodability for a single symmetric network,
to highlight the inability of existing models to explain dynamic coding, due to their
symmetry. The symmetric network shows a block of near-perfect decodability for all
pairs of times - this is what we expect from a network that uses a stable code, and solves
the task by effectively remaining at the initial condition for the duration of the delay
period. The unconstrained network produces a cross-temporal decodability matrix
that is phenomenologically the same as the recordings from monkeys in figure 4; it
displays a strongly dynamic coding, but good generalisation of the late-delay code.

Our final analysis is to plot the alignment index, which is the cross-temporal mea-
sures of the fraction of the variance at time t2 explained by the top two PCs at t1 (section
2.10). The alignment index is plotted in figure 16, for the same pair of networks that
are shown in figure 15. The alignment index is a meaningful metric because it quanti-
fies how the space in which the attractor network is encoding information, varies over
time. We initialise these networks with initial conditions lying on a ring (section 2.3)
and observe that the attractor space formed is a ring (figure 11) - but the planes of these
rings are not necessarily aligned.
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Figure 16: Alignment index for one symmetric (left) and one unconstrained (right)
network, the same networks as figure 15

Figure 16 demonstrates that in the symmetric network case, the plane that the ring of
initial conditions lies in (i.e. êinit

1 , êinit
2 ) are well aligned with the plane of the attractor

space (i.e. PCattr
1 , PCattr

2 ), because the same principal components can capture nearly all
the variance for all time. For the unconstrained network, the activity remains primarily
in 2 dimensions for the entire delay period (the diagonal is close to one), but the plane
of the initial ring is orthogonal to the attractor space. During the delay period, the
plane that the network encodes θcond in rotates (in M-dimensional space) to align with
the attractor space until its dynamics are well explained by the two PCs of the final
dynamics, i.e. the block of alignment index near one after the initial transient in figure
16.
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These results represent very strong evidence of dynamic coding in our unconstrained
attractor neural networks. The dynamic coding is directly visible in the activity of the
network (figure 13), and cross-temporal decodability (figures 14, 15) reaffirms this by
showing that the neural codes used by our networks consistently generalise poorly
from early to late-delay periods and vice versa. The dynamic aspect of this coding in
our model can be understood as the attractor network encoding a continuous variable
θcond as a location on a 2-dimensional ring for the duration of the delay period, where
importantly the plane of the ring rotates during network dynamics from its initial ori-
entation, until the orientation of ring is such that it forms a continuous ring of attractor
states.

4 Conclusions

• Hand-crafted rigid structure in network connectivity matrices is not necessary
to produce continuous attractor networks, which can be learned from random
initial conditions.

• Normative methods provide a powerful means of creating networks with partic-
ular dynamics, that would otherwise be difficult or impossible to hand-tune.

• Continuous attractor networks can form even if the network is only required
to store a discrete set of inputs, provided that sufficiently many inputs from a
continuous domain are used.

• Continuous attractor network models constrained to have symmetric connectiv-
ity matrices display stable coding when trained on our working memory main-
tenance task, and solve the task by staying in effectively the same state for the
duration of the delay period

• Continuous attractor network models with no constraints on connectivity ma-
trices can learn to solve our working memory maintenance task by encoding
information as a location on a ring; the basis of this ring can dynamically vary
throughout our delay period, facilitating dynamic coding.

5 Future Work

• Extending our networks to use more realistic nonlinearities such as ReLU or rec-
tified parabola rather than tanh, which unrealistically saturates (but we found
easier to train).

• Extending our single Wrec matrix to fully EI networks.

• Investigating the tuning curves of neurons in our networks to determine if un-
constrained networks produce heterogeneous tuning curves.

• More sophisticated mathematical analysis of the attractor manifold, such as show-
ing (by linearising our dynamics equations) that speed orthogonal to the mani-
fold is higher than speed along it.
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Appendix A: Risk Assessment Retrospective

The risk assessment for this project identified that there was no increase in risk to ev-
eryday life as a result of this project, as the entire work was performed with remotely
run simulations.

Appendix B: Disruption Due to COVID-19

This project did not require any in-person laboratory experiments, and was carried out
entirely from home. The project-specific disruption caused by COVID-19 was negligi-
ble.
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